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Let fez) be a nonconstant entire function. As usual, write M(r) =
max:zl~r [fez)!; then the order p and the lower order f3 off(z) are [1, p. 8]:

lim sup log log M(r) = p
r""co inf log r f3 (O<f3<p<co).

(0 ~ W < T < co).

If 0 < P < co, then the type T and the lower type W ofI are

lim ~up log M(r) = T

r""co Inf r" W

If p = 0, then we define the logarithmic order PI = A + 1 ofI as

1· log log M(r) A + '
1m sup 1 1 = PI = 1
r""CO og og r (0 ~A < 00). (3)

(4)

If p = 0, °< A < co, then we define the logarithmic types TI and WI ofI as

l' sup log M(r) _ TI

r~~ inf (log r )A+l - WI

Let fez) = L:'o akzk be an entire function with nonnegative real Gk

(ao > 0). Then set

Ao n = Ao n (1.-.) = inf 11_1 __1 II '. . I pEron f(x) p(X) L [000)
p(x) >O,O';;;X <CO 00 •
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where 7Tn denotes the class of all real algebraic polynomials of degree at
most n.

Long ago Chebyshev (cf. [20, p. 11]) observed that for every real g(x),
continuous on the real axis, for which lim",__co g(x) = lim", co g(x) (finite),
and for n = 1,2,... , there exists a rational function,

a~n) + a~n)x + ... + a~n)xn

RnCx) = b~nl + binlx + .,. + b<;:lXn '

such that
sup Ig(x) - RnCx)I-+ °

......-co <x <:00
(n -+ 00).

But Chebyshev never discussed the rate of convergence of R n to g. For such
a result see [Sa]. Recently much attention has been paid to obtaining upper
and lower bounds for the numbers lto,nO!f), a study initiated by G. Meinardus
and R.S. Varga [9] (cf. also [2] and [22].) Applications of these results can be
found in Varga's monograph [21]. Our present aim is to present a brief
survey of known results and to prove a few new ones.

Section 1 concerns a "converse" theorem (in which a degree of approxi
mation implies smoothness of the approximated function). Section 2 deals
mainly with entire functions of positive (finite) order or finite lower order.
Entire functions of zero order are discussed in Section 3. Section 4 treats
entire functions of infinite order. In the last section we discuss entire functions
of the form

. co Zk

fez) = 1 + L: d d ... d '
k~l 12k

where dk+1 > dk > 0, k = 1, 2,....

1

(6)

THEOREM 1 [10, THEOREM 3]. Let f(x) be a real continuous function on
[0, 00), never vanishing there and not a constant there, and assume that there
exists a sequence of real polynomials {Pn(x)}~ where each Pn E 7Tn and never
vanishes on [0, 00) such that

III
1 1 II !l/nlim sup -- - -- < 1

n__co f(x) Pn(x) £co[o,co) •
(7)

Then f is the restriction of an entire function I:;~o akzk of finite order, so that

I
, log log Mer)
1m sup 1 < oo.

r-"CO og r
(8)
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Remarks. (a) If all ale are? 0, lim sup in (8) can be replaced by lim (see
Theorem 13). Whether this replacement can be made in general is still an
open question. (b) If the hypotheses of Theorem I hold with (7) replaced by

I
'1_1__1 III -?o

f(x) Pn(x) 'L",[O,oo)

and by the assumption that the coefficients of all Pn are ~ 0, then f can be
shown to be the restriction of an entire function.

2

Quite recently A. SchOnhage has obtained the following

THEOREM 2 [19]. For fez) = e",

lim (,\0 n)l/n = ~.
n"""'OO •

This theorem strengthens a previous result of Cody, Meinardus and
Varga ([2], Corollary to Theorem 1, and Theorem 2). It is quite natural to ask
how much better one can do in approximating e-X on [0, (0) using general
rational functions than by using reciprocals of polynomials. Recently
D. J. Newman has answered this question as follows.

THEOREM 3 [11]. Let P(x) and Q(x) be real polynomials of degree < n
(n ? 1), Q(x) oF 0 throughout [0, (0). Then

II
e-X - P(X) II > (1280yn.

Q(x) Loo[O,oo)

In Theorems 4-20 below, every entire function mentioned will be
assumed to be of the form L;~o alczlc (";E ao) with ale :;:0: 0, k = 1,2,.. " and
ao > O. (Some results can be stated and proved with ao = 0 (cf. [9]).)

It is of interest to try to extend (10) to entire functions (Added in proof:
Such an extension has just been obtained by A. R. Reddy.) other than e-Z •

Recently Reddy has proved the following related result.

THEOREM 4 [15]. Let fez) be an entire function of order p (0 < P <
type T, and lower type w (0 < w ~ T < (0). Then one cannot find
n = 0, 1,2,... polynomials Pn(x) and Qn(x) with nonnegative real coefficients
(Qn(O) > 0) and of degree at most n for which

lim inf \11_1_ - Pn(x) II jl/n < (2V2)-T/(PW). (11)
n->OO I f(x) Qn(x) Loo[O.oo)
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(12)

Remark. Theorems 2 and 4 imply that in approximating e-re under the
uniform norm on [0, 00) by reciprocals of polynomials of degree ~ n we can
achieve a smaller error (for large n) than in approximating by general
rational functions (with degrees of numerator and denominator ~ n) having
nonnegative real coefficients;

Modifying the hypotheses of Theorem 4, we have the following:

THEOREM 5 [17]. Letf(z) be an entirefunction oforder p and maximal type
or of(finite) order> p. IfPn(x) and Qn(x) are,jor n = 0, 1,2,..., polynomials
with nonnegative real coefficients (Qn(O) > 0) of degree at most n, then

lim sup \11_1 _ Pn(x) II iP
/

n
:>-_1

n->W l f(x) Qn(x) Loo[O,oo) \ y- 2.75 .

THEOREM 6. Let fez) be an entire function of either infinite order or of
finite order but not of regular growth. If (Pn(x)r:~o and (Qn(x))~~o are as in
Theorem 5, then

. III 1 Pn(x) II ll/nhm sup -- - -- :>- 1
n->oo If(x) Qn(x) Loo[O,OO> y-.

(13)

The proof of the last theorem is very similar to that of Theorem 2 of [4].
Returning to approximation by reciprocals of polynomials, we state the

following result [9, Theorems 2 and 3].

THEOREM 7. Let fez) be an entire function of order p (0 < P < 00)

satisfying the further assumption that

O I
' log M(r)< 1m = 'T < 00.

7--700 rP

Then

(14)

(15)

Recently Reddy [13, 14 and 17a] has succeeded in generalizing (14) as
follows:

THEOREM 8. Let fez) be an entire function oforder p (0 < P < (0), type'T,
and lower type w. Then

(i) lim SUPn..,.oo [log njlog(;'o:;)J ~ p.

(ii) If'T < 2w, then

(

T )re2 /(pre1)

lim sup (;'0 n)l/n ~ -2- ,
n~OCl • W
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where Xl is the largest and X 2 the smallest root of the equation

X log(xle) + (wlr) = O.

(iii) If°< w ='( r < 00, then

lim inf (Ao.n)l/n ? [4(2r[w)1/p - 1]-2,
n-->OO

429

It is interesting to know whether one can extend Theorems 7 and 8 to
wider classes of entire functions. In this connection Meinardus, Reddy,
Taylor and Varga [10, Theorem 6] have obtained the following theorem.

THEOREM 9. Let fez) be an entire function of order p (0 < p < 00),

type r, and lower type w (0 < w ='( r < 00). Then

lim sup (110 n)l/n < 1.
n---';tCO •

(For a simpler proof see [17a].)

Quite recently, by adopting slightly different techniques, Erdos and
Reddy [6, Theorem 3] have obtained the following theorem.

THEOREM 10. Let fez) be an entire function of order p (0 < p <
type r, and lower type w (0 < w ='( r < 00). Then

lim sup (Ao,n)l/n ='( exp ( ;~) ) < 1,
n-->oo ,e 1 pT

where Xl and X 2 are as in Theorem 8 (cf Theorem 14).

(20)

Remarks. (a) There exist entire functions which fail to satisfy the
assumptions of Theorem 10 but for which we still have (cf. [6])

(b) It is quite natural to ask whether one can get any results involving
the lower order f3 of an entire function without making any restriction on the
order. In this connection Erdos and Reddy [5, Theorem 2; 7a, Theorem 2]
have proved the following theorem.
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THEOREM 11. Let fez) be an entire function offinite lower order [3. Then

lim inf (Ao n)l/n < e[-.8(e+1)]-l (= 0 if [3 = 0).
n-,?OC) ,

(22)

If the order p offsatisfies [3 < p < 00, then lim infn->oo (Ao , n)l/n = O.

We mention here the following result of Erdos and Reddy [5, Theorem 1].

THEOREM 12. Given a real sequence (g(n)):~o with g(n) -+ 00, there is an
entire function of infinite order for which, for infinitely many n,

Ao•n :::;; Ilg(n). (23)

THEOREM 13. Let fez) be an entire function of lower order [3 and order p
([3 < p).l Then

(24)

Proof Since fez) is of irregular growth, for each s > 0 there exists an
arbitrarily large real t s for which

f(t.(1 + S-1)) ): [J(ts)]".

(25) implies the conclusion (cf. [4, Theorem 2]).

(25)

THEOREM 14. Let fez) be an entire function and suppose there exist
constants 0 > 1, c > 1, € > 0 and 0 < C1 < C2 < l,for which,for all large r,

M(ro) ): {M(r)}O, where e= C2 + log (40 - 2) + E.

C1 c110g C
(26)

Then for every sequence (Pn(X)):=o , where each Pn(x) is a real polynomial of
degree :::;; n, positive throughout [0, (0), we have

. . !I[ 1 1 II 11/n -0lIm mf I I( ) - -(-) ): c > 0.
n->CO X Pn X £",[0,(0)

(27)

Proof. Suppose for some such sequence (Pn(x)):=o, (27) were false. Then
for n = n1 , n2 ,... , where °< n1 < n2 < ..., we would have

1
1

/

_
1 __1_11 < c-nO

I f(x) Pn(X) Loo[O.oo) .

For every nq sufficiently large, there is an r n > 0 such that
q

(28)

(29)

1 Observe that under the hypotheses of Theorem 10, we have, unlike here, f1 = p.
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(30)

for otherwise (28) would be contradicted. Now using (26) and (29), we obtain

But for x = rn 8, by using a result of Remez (cf. [8,534-535]), we get
q

Pn.(x) < (40 - 2tq (ce,nq
).

From (31) and (32) we have for that x,

(32)

contradicting (28).

3

For functions of order 0, Meinardus, Reddy, Taylor and Varga
[l0, Theorem 7] have obtained the following result.

THEOREM 15. Letf(z) be an entirefunction oflogarithmic order PI = A + 1
(0 < A < (0), and logarithmic types Tl and W! (0 < WI :(: T! < (0). Then

(34)

Recently Reddy (cf. [12, 16]) has improved (34) as follows.

THEOREM 16. Letf(z) satisfy the assumptions of Theorem 15. Then

( -A )" (\ )n-[10-.tC1j
exp (A + 1)[(A + 1) Td1/A :(: ~~~ sup /lo,n . < 1.

The following result is valid for a wider class of entire functions.

THEOREM 17 [6, Theorem 6]. Letf(z) be an entire function for which

1 --- I" log log M(r) - A --L 1
""" 1m sup 1 1 - I < 00.

r->OCJ og' og r

(35)

(36)



432

Then for every € > 0,

REDDY AND SHISHA

(37)

Remark. If (36) holds with lim replacing lim sup, then we can replace
lim.inf in (37) by lim sup. The proof of this is very similar to that of
Theorem 7* in [12].

4

Most of the above results concerned entire functions of finite order.
Recently, Erdos and Reddy [3-7] have developed a method by which one

can treat any entire function L:;~o alezle for which all ale ?': 0, k = 1, 2,...,
ao > 0. For example, they have shown [6, Theorem 1] the following:

THEOREM 18. Let f(z) be an entire function. Given € ::> 0 and a positive
integer j, there exist infinitely many n for which

(38)

where

ljn = log log ... log n (j times).

On the other hand, Theorem 1 implies

THEOREM 19. Let f(z) be an entire function of infinite order. Then

lim sup (Ao n)l/n ?': 1.
n-400 '

(For a direct proof, see [4]).

5

THEOREM 20. Let f(z) = 1 + L::=l zlef(d1d2 ••• dle), with dle+! > dle > 0,
k = 1,2,... , be an entirefunction offinite order p. Thenfor any € > 0, we have
for all large n,

This result is due to Erdos and Reddy [6, Theorem 4].



APPROXIMATION OF ENTIRE FUNCTIONS 433

Theorem 20 applies to many functions which fail to satisfy the assumptions
of some earlier theorems. For example [6], let

00 Zk

fez) = 1 + L 21og2 31og3 ... k10gk
k~l

For this function, A = 00, hence Theorems 15-17 are inapplicable. But (39)
readily implies

Let fez) = 1 + L::~l zkf(2233 '" kk). For this function, A = 1, Tl = 0;
hence Theorems 15 and 16 are not applicable. But (39) implies

lim (Ao n)1/(n2 1og n) = e-1 / 4•
n"""'OO '

Let fez) = L:;~o zkf82k (1 < 8 < 00). For this function A = O. One gets
from (39),

CONCLUDING REMARKS

(a) An interesting question is to what extent the requirement ak ~ 0,
k = 1, 2, ... , ao > 0 can be removed or modified in the above theorems.
See the last sentence in the paragraph following Theorem 3, as well as [7a
and 18].

(b) For extensions to nonentire functions, and for some results on
series with gaps, (cf. [7]).

(c) For Muntz-type results, cf. [7a].

(d) Approximation to reciprocals of some entire functions by
reciprocals of exponential polynomials, as well as by reciprocals of linear
combinations of certain entire functions of small growth has been studied in
{l7b].

(e) One can show that if 0 < fJ ~ p < 00, then

fJ/p lim infn-->oo [log log (Ao.1n)]jlog n ~ lim SUPn-->oo [log log (Ao~n)]jlog n ~ p[fJ.
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